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In describing the motion of a fluid the Eulerian method is generally
used. In the case of an incompressible fluid, which is considered in the
present paper, the velocity field u(§, t) serves as the Eulerian flow
characteristic (the pressure can be expressed by quadratic combinations
of the velocities). The Navier-Stokes equations (together with the con-
tinuity equation) in principle permit this field to be determined at
each moment of time t > t;, for given initial field uo(§) = u(g, o).

In a series of hydrodynamic problems it becomes necessary to describe
the motion of individual (marked) fluid particles or the evolution of
surfaces or volumes which consist of fixed fluid particles. In such prob-
lems it is more convenient to use the Lagrangean method to describe the
fluid motions. This method is of especial interest in the statistical
description of turbulent motions,

Thus, Taylor [1] formulated the basic concepts of the theory of
turbulent diffusion (which is none other than the statistical effect of
the transport of mixtures by moving fluid particles) in terms of the
Lagrangean correlation functions of the velocity field. The Lagrangean
method holds greater prospects for the subsequent development of the
theory of the local structure of turbulence, i.e. the statistical struc-
ture of the relative motions in the neighborhood of fixed fluid
particles; the use of approximate semi-Lagrangean hydrodynamic equations
has already permitted a series of interesting results to be obtained in
the study of the spectra of passive mixtures [2,3] and of the turbulent
energy spectrum [4] in a region of minimum scales of the turbulent
fluctuations, as well as in the statistical description of the stretch-
ing of material lines and surfaces in a turbulent flow [5]. Finally, the
Lagrangean method has a definite advantage in understanding fluid
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dynamics as a nonlinear mechanical system whose evolution occurs because
of internal interactions among its particles.

Because of the apparent cumbersomeness of the Lagrangean equations of
the hydrodynamics of a viscous fluid the structure of these equations
has until now not been studied in sufficient measure and they have still
not found proper application in specific problems. Also some highly
limited information has been successfully obtained [6] on the Lagrangean
characteristics of locally-isotropic turbulence without using the dynamic
equations.

A report by Pierson [7] was devoted to this problem at the Inter-
national Symposium on Turbulence in September 1961 in Marseille. However,
Pierson did not succeed in revealing the structure of the Lagrangean
equations and in writing them in compact form; in addition, the attempt
which he carried out to study the linearized Lagrangean equations in-
volved a violation of the continuity condition (which Pierson himself
also indicated).

1. Equations for the Cartesian coordinates of the fluid
particles. The function £(x, t) which determines at each moment of
time t the coordinates of the fluid particles which are identified by the
values of the parameter X serves as the exhaustive lagrangean cnaracter-
istic of the flow of an incompressible fluid. The hydrodynamic equations
in principle permit the function §(x, t) to be determined at any t > t,
for given initial values of the velocities of the fluid particles

Vo = [A58]

The Connection between the La"rall‘wean and ﬁulerian Charact,eristics iS
8 <]
given by the relation

05 (x, 1) /0t = u[§(x, t), ] (1.1)

The transformation from an Eulerian description to a Lagrangean de-
scription leads to the replacement of the independent variables (§, t)
in the hydrodynamic equations by (X, t) and to the transformation from
the unknown function u(€, t) to the new unknown function &(x, t),” which
is carried out according to Formula (1.1).

Henceforth, we shall use the initial values of their spatial coordi-
nates as the Lagrangean parameters of the fluid particles, 1.e. we shall
take

x = §(x, &) (1.2)

Let (<!, €2, €3) and (x!, 22, x®) be the Cartesian components of the
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vectors € and x. Replacing the independent variables (£!, €2, €3, t) by
(x , x2, xa, t) means a transformation from Cartesian coordinates to non-
stationary curvilinear and non-orthogonal coordinates which follow the
motion of the fluid. Actually, each coordinate of the surface x' = const
consists at all times of the same fluid particles; at the initial moment
such surfaces are planes, but with the flow of time they move with the
fluid and are distorted. The use of moving coordinates in hydrodynamics
was proposed as long ago as 1948 by Zel’manov [8] who called it the
method of unitary treatment of the motions of a continuous medium.

In the subsequent calculations we shall use the notation

a(4, B, C)
o am = 4B C (1.3)

for the Jacobian with respect to the variables x!, x%, 3.

Without further stipulations we shall make use of the fact that the
value of [4, B, C] is not changed for a cyclic permutation and that the
sign changes for an acyclic permutation of the variables 4, B, C.

In the transformation from the Eulerian variables £* to the Lagrangean
variables 2 the infinitesimal transformation matrix

_ | %
T 8eB

plays an important role.

(det T = |T | =[E', E3, E°])

According to (1.2) agé/axﬁ = Saﬂ at the initial moment of time, 1i.e.
the matrix T, is represented by a single quantity and |7' | = 1. The
quantities ax“/agf are the principal elements of the inverse matrix T~}
i.e. the algebraic sums of the elements O B/3x® in the matrix 7'd1v1ded
by IT]. Hence for computing derivatives with respect to the Eulerian
variable £' we have

af 1 -
72 =T B85 /1 o (1.4)
ilere and subsequently i, j, k are the cyclic permutation of the indices
1, 2, 3. Indeed, having written the left-hand side of Formula (1.4) in
the form
o ost
dz* 9t}

(here and subsequently summation is implied by repeated Greek indices)
we shall convince ourselves that the same expression is obtained by ex-
panding the determinant on the right-hand side with respect to the ele-
ments of the third row.
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With the help of Formulas (1.4) and (1.1) we obtain for the divergence
of the velocity

uq =ia_ﬁ‘"~|T|([ag1/at £2, £%] - (&%, 982/ at, %] +

+ 8L 8 08/ 0t))) = gy T

Here u, are the Cartesian components of the velocity. In the case of
an incompressible fluid the divergence of the velocity is identically
zero, 1i.e.

|T|/ot=0, or |T|=|Ty|=1

In other words, the continuity equation for an incompressible fluid
takes the form

(£, 8% 81 =1 (1.5)
in lagrangean variables.

We shall make further use of Formula (1.4), letting IT| =1 on the
right-hand side. With the help of this formula the expression

0 of

Aif = aga aga

= [E% &%, [E%, &%, /1) + (8%, B (%, B%, 1) + (8%, B, (B, B2, /11 (1.6)

is obtained for the Laplacian operator with respect to the Eulerian vari-
ables.

The equations of motion of an incompressible viscous fluid in Fulerian
variables have the form

%:—@—}—vAu, (P=%> (1.7)

Here p is the pressure, p is the density, and v is the kinematic co-
efficient of viscosity. Using Formulas (1.1), (1.4) and (1.6) we trans-
form (1.7) to Lagrangean variables in the following way

O e IB,B%, P+ v (I8, B8, (88, B, 0B/ 0] + (89, B, (29, B, 08/ o] +

+ (8%, 83, (&Y, &2, 6*/ 0t])) (1.8)

Equations (1.5) and (1.8) constitute the complete system of equations
of the dynamics of an incompressible fluid in.Lagrangean variables.

The forces which describe the interaction between the components of a
mechanical system correspond to the terms in the equations of motion
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which are nonlinear with respect to the basic dynamical variables. In the
Navier-Stokes equations (1.7) the terms which are nonlinear with respect

to the variables u; are contained in the expression for the acceleration

dui/dt; the forces of inertial interactions between the spatial non-uni-

formities of the velocity field u(§, t) correspond to them; the pressure

gradient as well is expressed through these forces (we emphasize that the
viscous forces are described in (1.7) by linear expressions).

The inertial interactions, however, have a relative character — they
are eliminated by transformation to a moving observation system. In the
Lagrangean equations of motion (1.8) the real forces of interaction be-
tween the fluid particles — the pressure gradient and viscous forces —
are, on the contrary, described by expressions which are nonlinear with
respect to the basic dynamical variables €.

We note that the viscous interaction forces are described in the
Lagrangean equations by nonlinear expressions of fifth degree with re-
spect to the variables §' (whereas in the Navier-Stokes equations the
inertial interactions are described by nonlinear expressions of second
degree with respect to the variables u;).

The ratio of the magnitudes of the nonlinear and linear terms in the
equations of motion which are characteristic for a given problem can be
called the constant of interaction. Thus, in the case of the Navier-
Stokes equations the constant of inertial interaction is the ratio of the
characteristic magnitudes of the inertial forces and the viscous forces,
i.e. the Reynolds number R. In the case of the Lagrangean equations the
constant of viscous interaction is the ratio of the characteristic
magnitudes of the viscous forces and the total acceleration, i.e. 1/R.
For sufficiently large values of R (characteristic of well-developed
turbulence) the inertial interactions which are taken into account in
the Fulerian description of the motion are strong; on the contrary, the
viscous interactions which are taken into account in the lagrangean de-
scription are weak.

We shall show some special cases in which the form of the lagrangean
equations 1is somewhat simglified. Let the motion take place only in
planes x° = const, i.e. & = x* (planar motion). Then using the binomial
symbol in square brackets for the two-dimensional Jacobian

2(A.B) _

Equations (1.5) and (%.8) can be reduced to the form
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[EL e =1
T = — (P, B2 + v ([&Y, (8, 68%/ 0r)) -+ (82, [E%, 98/ ot1] +
+ I8, B, (B, 22, 061/ 0]
g

= — I8 P1 + v (I8, [E', 087/ 0e]] + [§7, [, 08% / otl] +
+ [§%, &% (€%, §%, 98/ at])) (1.10)

The third equation of motion reduces to the form [€!, €%, P} = 0 and
indicates that the dependence of P on the four arguments x°, 2,08, 0t
reduces to dependence on three arguments £'(x, t), &£2(x, t) and t. In
the case of two-dimensional planar motion (when §3 3

U

x3, and ¢! and €2
are independent of x°) the third tcrms in the parentheses in (1.19)

vanish and the third equation of motion takes the form 3P/ = 0,

In the case of plane parallel motion along the x'- axis (i.e. for

§2 = x2, €% = x3) the continuity equation is equivalent to the formula
¢
Bl = g+ &v(xz,x“, t)dt (1.11)
and the equation of motion acquire: the linear form
= = T (G o) (42

The other two equations of motion show that P is a function only of
gl(x, t) and t.

2. The problem of turbulence. To describe statistically the
turbulent motion of a fluid we shall consider the field §(x, t) as a
random function of space-time points. For a complete statistical de-
scription of turbulence one can use a method proposed by Hopf [9] which
consists of finding the characteristic functional of the random function
€(x, t) defined by the formula

O{n(x,t)} =<y, (§,9)= &5“ (X, t) na (x, t) dxdt (2.1)

where the integral extends over the whole region of space-time in which
the fluid motion occurs and the symbol <4> designates the mathematical
expectation of the random quantity A.

The functional ® is an exhaustive statistical characteristic of the
random field §(x, t) because for functional arguments of the form
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9 (x, 1) =‘2 8 b (X —xx) 8 (2 — 1)
=1

the values of ® are the characteristic functions of the probability dis-
tributions for values of the field § over any finite large number of
space-time points (Xx,, t,).

In addition to the functional ®, we shall introduce into consideration
the operator

M{n(x,t);x,2} = P(x,t)eiCm} (2.2)

For the functionals or operators ¥ on a large number of functions
n(x, t) we shall introduce the variational derivative operator D,(x, t),
taking

_ ¥ .
Dk (x t)ly{"'!, W (2.3)

Specifically, the following formula for variational differentiation
will be needed

Dy (x, t) ei@m = Bk (x, £) i) (2.4)
Finally we shall use the identity
2 -
—gabr L4 ° pB.E 2.3)
[4,B,Cl=c¢ zABxB BaxTC (2.3)

Here Y = + 1 if (x, B, y) is a cyclic permutation of the indices
(1, 2, 3) and By = 1 if (x, B, y) is an acyclic permutation; P =g
if even two of the indices «, PB, y are the same.

Multiplying Equations (1.5) and (1.8) by e €M) and then applying
the mathematical expectation operator, these equations can with the help
of Formulas (2.4) to (2.5) be reduced to the form

l&aBY TTm— Dl

=D 5D LD =0 (2.5)

p,-2L _p, 2
ax"ax‘* 2oz

ot 2
+ Daa—;gl) s Do 2 p, +Dlwp,a %LD D )

Z.D® = iesbr —;-D, - zﬂ D% T -+ vesbrewwe = (Dea - Dy +

83"6

In these equations all operators D, and T are taken at the point
(x, t). The operator D, is linear, therefore Equations (2.6) to (2.7)
form a system of linear equations with respect to ¢ and 1. Hence, in
particular, it follows that 1T = L® where L is some linear operator. Thus,
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the problem of the complete statistical description of turbulence reduces
to solving linear equations, which is the principal advantage of the
method that has been presented (we shall observe, however, that the appa-
ratus for solving the equations in variational derivatives has not yet
been devised).

The function &(x, t) is simply determined by the initial velocity
field

Vom) =[252]

The complete statistical description of this field is given by the
characteristic functional

V {y ()} = Cexp i | Vou () 3 (x) d2]> (2:8)
Thus, taking Bt —to— ) — Bt — 1)
T (x,2,7) =y (%) = (2.9)

it should be required that the functional ¢ satisfy the initial condition

Ef(l)l O{m(x,t, )} =V {y (x)} (2.10)

in which the functional V is given.

3. The covariant Lagrangean equations and their linear-
ization. The continuity equation and the Navier-Stokes equations can
be transformed to lagrangean variables in such a way that only the con-
travariant components of the fluid particles defined by the relations

anq.d { i
i B L (3.1)

T ar T U g

and the components of the metric tensor of the moving space

g (x, 1) = B (3.2)

8z 8z
appear as the unknown functions in them.

We emphasize that the quantities g;, depend on t, i.e. that the metric
of the moving space is nonstationary. At the initial moment t = t; we
have g;, = 8.

The matrix G = || gikli is the product of the matrices T* = |3 erpxt,
T= ]Iagi/axk “, whose determinants are the same and in the case of an
incompressible fluid are equal to unity; consequently, in this case the
determinant | G| of the matrix || g;pll is identically equal to unity.
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We shall also introduce the inverse matrix G~ 1= H gik]] and the
Christoffel symbol of the second kind
ST (agaa‘ fak _ agik) Ll 3.3
i 2° dx + dx! 8z* ) OE® oxiod* (3-3)

and we shall use the identity
ak =0
which follows from the condition | G|= 1.
The expression for the divergence of the velocity can be transformed
in the following way
o og* _ af o (vyg_g_“) 0af 08 00 | . 0aF 5%7

2% Ot attosP \ oxY) 9% ax' 0P og“ ozPox”

The factor of vY in the second term is equal to r P =0, and the
first term reduces to the form 9P/3xP. Thus, the con11nu1ty equation
for an incompressible fluid can be written in the form

avP
— =20 3.4
oz? ( )

We shall now find the expression for the contravariant component of
the acceleration. Using the second formula of (3.1) twice, we obtain

gr @ o 1 i ! a i i
B ox' o= a(ﬁai)=av+vﬁaz a(vag>_

ot2 ag“ aga at axB _a? aEa 31‘B
vt ot
=G o (G o)

The expression in parentheses in the last formula is the covariant
derivative Vpu'.

In addition, the contravariant component of the pressure gradieni has
the form g*®dP/3x%, and the Laplacian of the velocity is g“BYZJva’ (we
note that the covariant derivatives are permutational because the moving
space is Euclidian and, consequently, the corresponding Riemann-
Christoffel tensor is equal to zero).

Thus, the equations of motion can be written in the form

‘2—’;1 + 20t = — g‘“ +vg“‘*v Y/ (3.9)
We shall use the Lagrangean equations of hydrodynamics (3.4) to (3.5)

to describe small oscillations of the fluid relative to the rest state.
We shall consider the quantities v' to be small and we shall linearize
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the Fquatlons (3.5), neglecting the terms whlch are quadratic with re-
spect to v' and replacing the quantities g' % and the Chrlstoffel symbols

w1th values which correspond to a fluid at rest (i.e. g = 8;, and
r = 0).
]k

The linearized equations of motion will have the form

Here V is the laplace operator with respect to the variables x%.
These equations together with the continuity equation (3.4) permit
the quantities v*(X, t) to be determined for given initial values v'(Xx,
to) = u;(x) (where u; are the Cartesian components of the velocity at

the initial moment).

According to (3.1) the quantities v' are expressed nonlinearly in the
Cartesian coordinates of the fluid particles £%; however, in using Equa-
tions (3.4) and (3.6) there is no need to linearize these expressions,
so that the continuity equation remains exact. This 1s an important
advantage of the proposed procedure for linearizing the lLagrangean equa-
tions in comparison to the linearization of the equations for the
Cartesian coordinates of the fluid particles, which was carried out by
Pierson and which is associated with a violation of the continuity equa-
tion. We note that after determining the quantities v'(x, t) with the
help of FEquations (3.4) to (3.6) the Cartesian coordinates of the fluid
particles £*(x, t) can be found from the two Zquations (3.1) which for
known v' are linear with respect to the quantities §'.
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